當(dāng)前位置:家教網(wǎng)首頁 > 家庭教育 > 高中數(shù)學(xué)學(xué)習(xí)方法(13)
高中數(shù)學(xué)學(xué)習(xí)方法(13)
【來源:易教網(wǎng) 更新時間:2025-11-29】
一是有20棵樹,每行四棵,古羅馬、古希臘在16世紀(jì)就完成了16行的排列,18世紀(jì)高斯猜想能排18行,19世紀(jì)美國勞埃德完成此猜想,20世紀(jì)末兩位電子計算機高手完成20行紀(jì)錄,跨入21世紀(jì)還會有新突破嗎?
二是相鄰兩國不同著一色,任一地圖著色最少可用幾色完成著色?五色已證出,四色至今僅美國阿佩爾和哈肯,羅列了很多圖譜,通過電子計算機逐一理論完成,全面的邏輯的人工推理證明尚待有志者。
三是任三人中可證必有兩人同性,任六人中必有三人互相認(rèn)識或互相不認(rèn)識(認(rèn)識用紅線連,不認(rèn)識用藍(lán)線連,即六質(zhì)點中二色線連必出現(xiàn)單色三角形)。近年來國際奧林匹克數(shù)學(xué)競賽也圍繞此類熱點題型遴選后備攻堅力量。(如十七個科學(xué)家討論三課題,兩兩討論一個題,證至少三個科學(xué)家討論同一題;
十八個點用兩色連必出現(xiàn)單色四邊形;兩色連六個點必出現(xiàn)兩個單色三角形,等等。)單色三角形研究中,尤以不出現(xiàn)單色三角形的極值圖譜的研究更是難點中之難點,熱門中之熱門。
歸納為20棵樹植樹問題,四色繪地圖問題,單色三角形問題。通稱現(xiàn)代數(shù)學(xué)三大難題。
高中數(shù)學(xué)成績下降是什么原因
智者形容數(shù)學(xué):“思維的體操,智慧的火花”。“最能考察或驗證一個人具備智慧多少的一門學(xué)問或?qū)W科”!在當(dāng)今知識經(jīng)濟時代,數(shù)學(xué)正在從幕后走向臺前,它與計算機技術(shù)的結(jié)合在許多方面直接為社會創(chuàng)造價值,推動了社會生產(chǎn)力的發(fā)展。數(shù)學(xué)是人類文化的重要組成部分之一,它已成為公民所必須具備的一種基本素質(zhì)。
數(shù)學(xué)在形成人類理性思維的過程中發(fā)揮著獨特的、不可替代的作用。于是呼,沖刺高考時選學(xué)理者多多,且發(fā)誓要用數(shù)學(xué)拉動高考總成績者眾多。可喜可賀!作為衡量一個人能力的重要學(xué)科數(shù)學(xué)。
從小學(xué)到,對它情有獨鐘的大有人在,且大都投入了大量的時間與精力.然而我們也不能忽視另一種事實:并非人人都是成功者!許多小學(xué)、時期的數(shù)學(xué)成績佼佼者,進(jìn)入高中階段,第一個跟頭就栽在了數(shù)學(xué)上。
對選學(xué)文科的成功者的一項調(diào)查也表明,雖然他們高中也很想學(xué)好數(shù)學(xué),可數(shù)學(xué)成績就是提不上來,于是折射形成了“最怕”見高中數(shù)學(xué)老師的現(xiàn)象。這種“懼怕”高中數(shù)學(xué)的現(xiàn)象目前是比較普遍的,應(yīng)當(dāng)引起重視。當(dāng)然造成這種現(xiàn)象的原因是多方面的。
本文僅就學(xué)生的學(xué)習(xí)狀態(tài)方面淺談一下影響高中數(shù)學(xué)成績下降的原因及解決方法面對眾多初中數(shù)學(xué)學(xué)習(xí)的成功者淪為高中學(xué)習(xí)的失敗者,筆者對他們的學(xué)習(xí)狀態(tài)進(jìn)行了調(diào)研。結(jié)果表明:造成成績滑坡的主要原因有以下幾個方面.
1.被動學(xué)習(xí).許多同學(xué)進(jìn)入高中后,還像初中那樣,有很強的依賴心理:跟隨老師慣性運作。沒有掌握學(xué)習(xí)的主動權(quán).其表現(xiàn)有:不定計劃,坐等上課,課前不預(yù)習(xí),對老師要上課的內(nèi)容不了解,上課忙于記筆記,沒聽到“門道”.一切的一切造成沒能真正理解所學(xué)內(nèi)容的無奈表態(tài)。
2.學(xué)不得法.老師上課一般都要講述知識的來龍去脈,剖析概念的內(nèi)涵,分析重點難點,突出思想方法.而一部分同學(xué)上課不能做到專心聽講,對要點聽不清或聽不全。于是筆記記了一大本,問題留了一大堆。而課后呢,又不能及時鞏固,找不到知識間的聯(lián)系,只是一味地趕做作業(yè),亂套題型。
對概念、法則、公式、定理一知半解,死記硬背的結(jié)果是一味地“機械模仿”。也有的晚上加班加點,白天無精打采,或是上課根本不聽,自己另搞一套。最終是事倍功半,收效甚微.
3.不重視基礎(chǔ).一些“自我感覺良好”的同學(xué),常輕視基本知識、基本技能和基本方法的學(xué)習(xí)與訓(xùn)練,一貫做法是只求知道怎么做,不去認(rèn)真演算書寫。其心理誘因是僅對難題感興趣,以示自己的“水平”高。
這種好高鶩遠(yuǎn),重“量”輕“質(zhì)”的做法導(dǎo)致的結(jié)果是陷入題海,不自拔.而到正規(guī)作業(yè)或考試中卻是演算出錯或中途“卡殼”.
4.不具備進(jìn)一步學(xué)習(xí)條件.高中數(shù)學(xué)與初中數(shù)學(xué)相比,知識的廣度、深度更進(jìn)一程,能力要求更進(jìn)一步.這就要求必須掌握基礎(chǔ)知識與基本技能,為進(jìn)一步學(xué)習(xí)作好充分準(zhǔn)備.高中數(shù)學(xué)很多地方難度大、方法新、分析能力要求高.如:二次函數(shù)在閉區(qū)間上的最值問題,函數(shù)值域的求法問題,實根分布與參變量方程,三角公式的變形與靈活運用,空間概念的形成,排列組合的應(yīng)用和實際應(yīng)用問題解答等.客觀上,這些問題的能力要求就是數(shù)學(xué)學(xué)習(xí)的分化點,更何況有的數(shù)學(xué)知識點還是高、初中教材都不講的脫節(jié)內(nèi)容,如不采取補救措施,查缺補漏,分化是不可避免的.
所以,高中學(xué)生僅僅有想學(xué)的念頭是不夠的,還必須“會學(xué)”。要講究科學(xué)的學(xué)習(xí)策略和方法,以此提高學(xué)習(xí)效率,變被動學(xué)習(xí)為主動學(xué)習(xí).針對學(xué)生學(xué)習(xí)中出現(xiàn)的上述情況,教師應(yīng)當(dāng)采取以加強學(xué)法指導(dǎo)為主,化解分化點為輔的對策:
1.加強學(xué)法指導(dǎo),培養(yǎng)良好學(xué)習(xí)習(xí)慣。良好的學(xué)習(xí)習(xí)慣包括制定計劃、課前自學(xué)、專心上課、及時復(fù)習(xí)、獨立作業(yè)、解決疑難、系統(tǒng)小結(jié)和課外學(xué)習(xí)幾個方面.
高中數(shù)學(xué)學(xué)習(xí)方法
編者按:小編為大家收集了“高中數(shù)學(xué)學(xué)習(xí)方法:高一升高二數(shù)學(xué)學(xué)習(xí)心得”,供大家參考,希望對大家有所幫助!
度過了貌似很輕松愉快的高一生活,我們昂首闊步來到了高二,對于數(shù)學(xué)一科,相當(dāng)多的同學(xué)覺得高一階段的知識非常可怕,不夸張的說高一階段的知識比整個初中的知識問題還要多。如今到了高二,是不是知識更多更難了呢?
個人認(rèn)為并不是這樣的,高一階段的知識強調(diào)的是理解,而高二階段強調(diào)的是功力和技巧。差別莘不在于難度,而在于學(xué)習(xí)的側(cè)重點,可以說高二的很多知識是對高一知識的深化和拓展。舉個例子,高一階段我們學(xué)習(xí)了函數(shù)的相關(guān)性質(zhì),其中很重要的一條是單調(diào)性。
高一我們對這個知識點的要求是會用“比較法”判斷單調(diào)性,還要通過對圖像的分析來對函數(shù)單調(diào)性有直觀的感受。這些都昌對函數(shù)單調(diào)性的理解。到了高二階段,文科和理科學(xué)生都要學(xué)習(xí)一樣新的工具——導(dǎo)數(shù),也就是我們慶不做函數(shù)圖像,也不用“取點比較”的情況下直接判斷函數(shù)的單調(diào)性和單調(diào)區(qū)間。
而這種處理單調(diào)性問題的新方法需要的就是熟練掌握技巧和扎實的基本功。
還有幾何方面,高一階段我們大多數(shù)同學(xué)學(xué)過了直線和圓,這是解析幾何的初步,相信很多同學(xué)對于解析幾何復(fù)雜的運算至今還“意猶未盡”。那么到了高二階段,我們將要學(xué)習(xí)更加復(fù)雜的三類曲線——橢圓、雙曲線、拋物線。
運算上難度大大增加,圖形的復(fù)雜度也大大增加,但是就本質(zhì)來說,考察的核心還是“在圖形中尋找線索,在計算中得到結(jié)果”的解題思路。另外立體幾何中還要引入空間向量的方法,實際也是把幾何問題代數(shù)化,使同學(xué)用在復(fù)雜的立體圖形中找輔助線了,當(dāng)然,空間向量法帶來的運算量也是相當(dāng)大的'。
在一些小知識上也有所深化,還記得當(dāng)初在學(xué)習(xí)概率的時候,我們實際沒有學(xué)習(xí)任何的計算方法,當(dāng)時我們算概率的時候只能一個一個的數(shù)出來,如果題目的數(shù)稍微大一點的話我們就不得不把大量的時間浪費在數(shù)數(shù)上,在高二我們就會學(xué)到高手是怎樣數(shù)數(shù)的,也就是所謂的計數(shù)原理,到時候同學(xué)業(yè)們就會知道“乘法”比“加法”究竟能快多少。
也能徹底搞清楚生活中的隨機事件里究竟蘊含了怎樣的數(shù)學(xué)原理。
總體來說,高二數(shù)學(xué)的難度比高一要大,但是如果同學(xué)們在高一的時候?qū)χR有深入的理解的話,高二階段的知識也就只是個深化練習(xí)的過程了,這就要求同學(xué)們在高二的時候造成不要放松,這個時期是最需要大量做題,大量練習(xí)的時期,錯過了這個時期就再也沒有機會超越別人了。
有人會想高三再努力也不遲,殊不知高三的時候所有好好學(xué)習(xí)的人都會拼命的做題,拼命地練習(xí),在那時想趕超別人幾乎是不可能完成的任務(wù)。高三環(huán)境是不努力的人必然跌入谷底。努力的人也只可以保證不下降。也就是說想超過別人,走在別人前面,高二已經(jīng)是最后的機會了。
對于高一階段知識掌握的不夠扎實的同學(xué),高二也是唯一可能提高的機會了,正像上文所說,高二的知識很多是高一知識的擴展和深化,也就是說如果之前學(xué)習(xí)的時候沒有掌握好,那么高二的學(xué)習(xí)就既是學(xué)習(xí)過程又是復(fù)習(xí)過程。
高中階段學(xué)習(xí)節(jié)奏之快使得一開始落后一點的同學(xué)在之后的學(xué)習(xí)過程中幾乎沒有什么時間再回過頭來重新學(xué)習(xí),也就是說如果想補救之知識漏洞,高中階段唯一可行的辦法就是在學(xué)習(xí)中復(fù)習(xí)。
比如說如果有同學(xué)函數(shù)沒有學(xué)好,沒關(guān)系,高二學(xué)習(xí)導(dǎo)數(shù)的時候會再回來研究函數(shù)問題:平面向量沒學(xué)好,沒關(guān)系,學(xué)習(xí)空間向量的進(jìn)修也可以順帶復(fù)習(xí);直線和圓沒學(xué)好,沒關(guān)系,圓錐曲線比圓難多了,學(xué)好圓錐曲線之后再回去看圓就輕松多了。
在數(shù)學(xué)學(xué)科,如果你想超越別人,高二是最好的機會,如果你想追上別人,高二是最后的機會。我們將迎來高中整個三年中最困難,最有挑戰(zhàn),也是收益最大的一年。高考中數(shù)學(xué)的重要性無庸贅述,希望同學(xué)們能在高二的時候抓住機會,為了能有一個輕松的高三,也為了能有一個滿意的高考而努力。
搜索教員
最新文章
熱門文章
大家都在看
- 尚教員 山東工業(yè)職業(yè)學(xué)院 環(huán)境藝術(shù)設(shè)計
- 李老師 尚無職稱等級 環(huán)境藝術(shù)設(shè)計
- 盧教員 農(nóng)業(yè)商貿(mào)職業(yè)學(xué)院 農(nóng)村電商
- 劉教員 北京建筑大學(xué) 法學(xué)
- 李老師 尚無職稱等級 法學(xué)
- 馬教員 北京交通大學(xué) 電氣工程及其自動化
- 王教員 北京化工大學(xué) 自動化高端裝備與智能制造中的安全工程
- 孫教員 中國礦業(yè)大學(xué)(北京) 管理科學(xué)與工程
- 袁教員 北京工商大學(xué) 軟件工程
- 許教員 中央民族大學(xué) 歷史學(xué)
