當(dāng)前位置:家教網(wǎng)首頁(yè) > 家庭教育 > 高中數(shù)學(xué)解題策略與技巧
高中數(shù)學(xué)解題策略與技巧
【來(lái)源:易教網(wǎng) 更新時(shí)間:2024-11-23】
篇1:高中數(shù)學(xué)解題策略與技巧
數(shù)學(xué)思想方法與數(shù)學(xué)知識(shí)的共存性、數(shù)學(xué)思想對(duì)數(shù)學(xué)活動(dòng)的指導(dǎo)作用、被認(rèn)知的思想方法只有在反復(fù)的運(yùn)用中才能被真正掌握這一教學(xué)規(guī)律,今天高三網(wǎng)小編整理了一些高中數(shù)學(xué)解題策略與技巧與技巧,希望對(duì)大家有幫助。
1高中數(shù)學(xué)巧妙解題的方法有哪些
①背例題:首先背例題的主要原因就是能夠在考場(chǎng)上遺忘了一些重要公式的時(shí)候,可以用題來(lái)套公式,這樣可以更好的幫助你理解試題,更好的解決試題中遇到的問(wèn)題。
②課前預(yù)習(xí):很多人可能覺(jué)著課前預(yù)習(xí)對(duì)于巧妙解題并沒(méi)有什么影響,實(shí)則不然,課前預(yù)習(xí)主要是讓你了解課內(nèi)出現(xiàn)的一些知識(shí),自然就會(huì)有更多的方法來(lái)解答自己不會(huì)的題目啦。
③背基礎(chǔ):基礎(chǔ)知識(shí)永遠(yuǎn)是解題過(guò)程中遇到的最多的,所以背誦基礎(chǔ)知識(shí)能夠幫助你更好的理解試題。
④綜合理解逐一突破:簡(jiǎn)單來(lái)講就是由簡(jiǎn)到難,很多試題都是用簡(jiǎn)單的公式來(lái)變換,這也要求學(xué)生們能夠舉一反三,這樣才能更好的解決問(wèn)題。
2如何提高數(shù)學(xué)成績(jī)的5個(gè)方法
第一、吃苦。學(xué)習(xí)是孩子自己的事情,別人幫不了你。而且學(xué)習(xí)本身就是一個(gè)很苦的事情,所以,要自己做好吃苦的準(zhǔn)備,刻苦鉆研,每天努力。
第二、精讀教材。現(xiàn)在很多孩子學(xué)習(xí)成績(jī)不理想,有一個(gè)很大部分的原因,就是他自己連教材是什么樣子的,都沒(méi)有認(rèn)真看過(guò)。
第三、上課專心聽(tīng)講,和課后整理筆記。這點(diǎn)有多重要,就不多講了。為了提高上課效率,課前一定要認(rèn)真的預(yù)習(xí)功課。課堂上,不要猛抄筆記,錯(cuò)過(guò)老師的解題思路和總結(jié),就得不償失。筆記是都是課后再去整理和總結(jié)的。
第四、獨(dú)立做題,勤于思考。做題一定要獨(dú)立完成,不要依賴別人,不要依賴搜題軟件。可以翻書,找例題。要輕語(yǔ)思考和總結(jié),把類似的相關(guān)題型,歸納總結(jié)起來(lái)。
第五、不遺留問(wèn)題。每天遇見(jiàn)的問(wèn)題,一定要想辦法解決,多請(qǐng)教同學(xué)和老師,要多問(wèn)幾個(gè)為什么,多和同學(xué)交流學(xué)習(xí)上的想法,有自己的觀點(diǎn)和分歧的時(shí)候,要勇于表達(dá)。
篇2:高中數(shù)學(xué)解題策略與技巧
高三數(shù)學(xué)備考復(fù)習(xí)策略常用的高中數(shù)學(xué)解題策略與技巧。高三是緊張且充滿挑戰(zhàn)的一年。新高三生該如何在開(kāi)學(xué)階段就HOLD住數(shù)學(xué)科目,當(dāng)前學(xué)習(xí)的重點(diǎn)是什么?
開(kāi)學(xué)數(shù)學(xué)四步走
一、梳理基礎(chǔ)知識(shí)
打好基礎(chǔ),首先須重視數(shù)學(xué)基本概念、基本定理(公式、法則)的復(fù)習(xí),在理解上下功夫,整體把握數(shù)學(xué)知識(shí)。這部分內(nèi)容的復(fù)習(xí)要做到不打開(kāi)課本,能選擇適當(dāng)途徑將它們回憶出,它們之間的脈絡(luò)框圖,能在自己大腦中勾畫出來(lái)。如函數(shù)可以利用框圖的形式由粗到細(xì)進(jìn)行回憶。
概念要抓住關(guān)鍵及注意點(diǎn),公式及法則要理解它們的來(lái)源,要理解公式法則中每一個(gè)字母的含義,即它們分別表示什么,這樣才能正確使用公式。在平時(shí)學(xué)習(xí)時(shí),不要滿足于得到答案就行了,而其他的方法卻不去研究,尤其課堂上,老師通過(guò)一個(gè)典型的例題介紹處理這種問(wèn)題有哪些方法,可以從哪些不同的角度來(lái)思考問(wèn)題。方法沒(méi)有好壞之分,只是在解決具體的問(wèn)題時(shí)才有優(yōu)劣之分,更重要的是要關(guān)注通性、通法的掌握,而不是僅關(guān)注此問(wèn)題特殊的、簡(jiǎn)單的方法。
二、重視“三基”
高考數(shù)學(xué)學(xué)科的考試既考查中學(xué)數(shù)學(xué)的基礎(chǔ)知識(shí)和方法,又考查考生進(jìn)人高校繼續(xù)學(xué)習(xí)的潛能。因此,既突出對(duì)基礎(chǔ)知識(shí)、基本技能、基本數(shù)學(xué)思想方法的考察,又強(qiáng)調(diào)能力立意,以數(shù)學(xué)的基礎(chǔ)知識(shí)為載體,考察學(xué)生的數(shù)學(xué)能力,同時(shí)注意考察學(xué)生的創(chuàng)新能力。
學(xué)生在高三的學(xué)習(xí)過(guò)程中要注重“三基”。首先,是基礎(chǔ)知識(shí)。學(xué)生要注重基礎(chǔ)知識(shí)的積累,能將基礎(chǔ)知識(shí)全面的掌握和理解。其次,是基本方法,也就是“通法”,最基本的解題方法,以及書本和考綱要求學(xué)生掌握的基本方法。最后,就是基本能力。
數(shù)學(xué)的基本能力包括思維能力、運(yùn)算能力、空間想象能力及分析和解決問(wèn)題的能力等。高三生在解題過(guò)程中一定要思維縝密、有理有據(jù),步驟完整。在立體幾何部分,解題時(shí)要多運(yùn)用數(shù)理結(jié)合、數(shù)的運(yùn)算,要有耐心。
三、注重學(xué)習(xí)策略
學(xué)生一定要學(xué)會(huì)自學(xué)考綱,即注重課前復(fù)習(xí),看考綱數(shù)學(xué)要求,做到心中有數(shù)。而且在學(xué)習(xí)數(shù)學(xué)時(shí),一定要不斷鞏固,適當(dāng)重復(fù),舉一反三。此外,做題后的反思也很重要,學(xué)生要有意識(shí)地反思題目考察的知識(shí)點(diǎn),考察的數(shù)學(xué)方法、數(shù)學(xué)思想,以及易錯(cuò)的點(diǎn)是什么。切忌鉆難、怪、偏題,花無(wú)謂的時(shí)間,切忌題海戰(zhàn),要提高學(xué)習(xí)效率。
四、調(diào)整好學(xué)習(xí)心態(tài)
在整個(gè)高三數(shù)學(xué)的學(xué)習(xí)上,良好的學(xué)習(xí)心態(tài)也尤其重要。學(xué)生要能主動(dòng)學(xué)習(xí),即讓自己的學(xué)習(xí)進(jìn)度、復(fù)習(xí)進(jìn)度都能趕在老師授課之前;并且還能在老師安排學(xué)習(xí)計(jì)劃的基礎(chǔ)上,制訂好一份自己的計(jì)劃,整理好自己的學(xué)習(xí)時(shí)間和進(jìn)度,按照自己的進(jìn)度和目標(biāo)實(shí)施。此外,還要注重和同學(xué)間的合作學(xué)習(xí),不能單打獨(dú)斗,要多和同學(xué)探討。在心態(tài)上,學(xué)生一定要對(duì)自己的學(xué)習(xí)能力、狀態(tài)、知識(shí)水平、學(xué)習(xí)進(jìn)度的實(shí)施等持有正確的評(píng)價(jià)。

篇3:高中數(shù)學(xué)解題策略與技巧
高中數(shù)學(xué)解析幾何解題方法我們先來(lái)分析一下解析幾何高考的命題趨勢(shì):
(1)題型穩(wěn)定:近幾年來(lái)高考解析幾何試題一直穩(wěn)定在三(或二)個(gè)選擇題,一個(gè)填空題,一個(gè)解答題上,占總分值的20%左右。
(2)整體平衡,重點(diǎn)突出:其中對(duì)直線、圓、圓錐曲線知識(shí)的考查幾乎沒(méi)有遺漏,通過(guò)對(duì)知識(shí)的重新組合,考查時(shí)既留意全面,更留意突出重點(diǎn),對(duì)支撐數(shù)學(xué)科知識(shí)體系的主干知識(shí),考查時(shí)保證較高的比例并保持必要深度。近幾年新教材高考對(duì)解析幾何內(nèi)容的考查主要集中在如下幾個(gè)類型:
① 求曲線方程(類型確定、類型未定);
②直線與圓錐曲線的交點(diǎn)題目(含切線題目);
③與曲線有關(guān)的最(極)值題目;
④與曲線有關(guān)的幾何證實(shí)(對(duì)稱性或求對(duì)稱曲線、平行、垂直);
⑤探求曲線方程中幾何量及參數(shù)間的數(shù)目特征;
(3)能力立意,滲透數(shù)學(xué)思想:一些雖是常見(jiàn)的基本題型,但假如借助于數(shù)形結(jié)合的思想,就能快速正確的得到答案。
(4)題型新奇,位置不定:近幾年解析幾何試題的難度有所下降,選擇題、填空題均屬易中等題,且解答題未必處于壓軸題的位置,計(jì)算量減少,思考量增大。加大與相關(guān)知識(shí)的聯(lián)系(如向量、函數(shù)、方程、不等式等),凸現(xiàn)教材中研究性學(xué)習(xí)的能力要求。加大探索性題型的分量。
在近年高考中,對(duì)直線與圓內(nèi)容的考查主要分兩部分:
(1)以選擇題題型考查本章的基本概念和性質(zhì),此類題一般難度不大,但每年必考,考查內(nèi)容主要有以下幾類:
①與本章概念(傾斜角、斜率、夾角、間隔、平行與垂直、線性規(guī)劃等)有關(guān)的題目;
②對(duì)癡光目(包括關(guān)于點(diǎn)對(duì)稱,關(guān)于直線對(duì)稱)要熟記解法;
③與圓的位置有關(guān)的題目,其常規(guī)方法是研究圓心到直線的間隔.
以及其他“標(biāo)準(zhǔn)件”類型的基礎(chǔ)題。
(2)以解答題考查直線與圓錐曲線的位置關(guān)系,此類題綜合性比較強(qiáng),難度也較大。
預(yù)計(jì)在今后一、二年內(nèi),高考對(duì)本章的考查會(huì)保持相對(duì)穩(wěn)定,即在題型、題量、難度、重點(diǎn)考查內(nèi)容等方面不會(huì)有太大的變化。
相比較而言,圓錐曲線內(nèi)容是平面解析幾何的核心內(nèi)容,因而是高考重點(diǎn)考查的內(nèi)容,在每年的高考試卷中一般有2~3道客觀題和一道解答題,難度上易、中、難三檔題都有,主要考查的內(nèi)容是圓錐曲線的概念和性質(zhì),直線與圓錐的位置關(guān)系等,從近十年高考試題看大致有以下三類:
(1)考查圓錐曲線的概念與性質(zhì);
(2)求曲線方程和求軌跡;
(3)關(guān)于直線與圓及圓錐曲線的位置關(guān)系的題目.
選擇題主要以橢圓、雙曲線為考查對(duì)象,填空題以拋物線為考查對(duì)象,解答題以考查直線與圓錐曲線的位置關(guān)系為主,對(duì)于求曲線方程和求軌跡的題,高考一般不給出圖形,以考查學(xué)生的想象能力、分析題目的能力,從而體現(xiàn)解析幾何的基本思想和方法,圓一般不單獨(dú)考查,總是與直線、圓錐曲線相結(jié)合的綜合型考題,等軸雙曲線基本不出題,坐標(biāo)軸平移或平移化簡(jiǎn)方程一般不出解答題,大多是以選擇題形式出現(xiàn).解析幾何的解答題一般為困難,近兩年都考查了解析幾何的基本方法——坐標(biāo)法以及二次曲線性質(zhì)的運(yùn)用的命題趨向要引起我們的重視.
請(qǐng)同學(xué)們留意圓錐曲線的定義在解題中的應(yīng)用,留意解析幾何所研究的題目背景平面幾何的一些性質(zhì).從近兩年的試題看,解析幾何題有前移的趨勢(shì),這就要求考生在基本概念、基本方法、基本技能上多下功夫.參數(shù)方程是研究曲線的輔助工具.高考試題中,涉及較多的是參數(shù)方程與普通方程互化及等價(jià)變換的數(shù)學(xué)思想方法。
考查的重點(diǎn)要落在軌跡方程、直線與圓錐曲線的位置關(guān)系,往往是通過(guò)直線與圓錐曲線方程的聯(lián)立、消元,借助于韋達(dá)定理代人、向量搭橋建立等量關(guān)系。考查題型涉及的知識(shí)點(diǎn)題目有求曲線方程題目、參數(shù)的取值范圍題目、最值題目、定值題目、直線過(guò)定點(diǎn)題目、對(duì)癡光目等,所以我們要把握這些題目的基本解法。
命題特別留意對(duì)思維嚴(yán)密性的考查,解題時(shí)需要留意考慮以下幾個(gè)題目:
1、設(shè)曲線方程時(shí)看清焦點(diǎn)在哪條坐標(biāo)軸上;留意方程待定形式及參數(shù)方程的使用。
2、直線的斜率存在與不存在、斜率為零,相交題目留意“D”的影響等。
3、命題結(jié)論給出的方式:搞清題目所給的幾個(gè)小題是并列關(guān)系還是遞進(jìn)關(guān)系。假如前后小題各自有強(qiáng)化條件,則為并列關(guān)系,前面小題結(jié)論后面小題不能用;不過(guò)考題經(jīng)常給出的是遞進(jìn)關(guān)系,有(1)、第一問(wèn)求曲線方程、第二問(wèn)討論直線和圓錐曲線的位置關(guān)系,(2)第一問(wèn)求離心率、第二問(wèn)結(jié)合圓錐曲線性質(zhì)求曲線方程,(3)探索型題目等。解題時(shí)要根據(jù)不同情況考慮施加不同的解答技巧。
4、題目條件如與向量知識(shí)結(jié)合,也要留意向量的給出形式:
(1)、直接反映圖形位置關(guān)系和性質(zhì)的,如?=0,=( ),λ,以及過(guò)三角形“四心”的向量表達(dá)式等;
(2)、=λ:假如已知M的坐標(biāo),按向量展開(kāi);假如未知M的坐標(biāo),按定比分點(diǎn)公式代進(jìn)表示M點(diǎn)坐標(biāo)。
(3)、若題目條件由多個(gè)向量表達(dá)式給出,則考慮其圖形特征(數(shù)形結(jié)合)。
5、考慮圓錐曲線的第一定義、第二定義的區(qū)別使用,留意圓錐曲線的性質(zhì)的應(yīng)用。
6、留意數(shù)形結(jié)合,特別留意圖形反映的平面幾何性質(zhì)。
7、解析幾何題的另一個(gè)考查的重點(diǎn)就是學(xué)生的基本運(yùn)算能力,所以解析幾何考題學(xué)生普遍感覺(jué)較難對(duì)付。為此我們有必要在平常的解題變形的過(guò)程中,發(fā)現(xiàn)積累一些式子的常用變形技巧,如假分式的分離技巧,對(duì)癡規(guī)換的技巧,構(gòu)造對(duì)稱式用韋達(dá)定理代進(jìn)的技巧,構(gòu)造均值不等式的變形技巧等,以便提升解題速度。
8、平面解析幾何與平面向量都具有數(shù)與形結(jié)合的特征,所以這兩者多有結(jié)合,在它們的知識(shí)點(diǎn)交匯處命題,也是高考命題的一大亮點(diǎn).直線與圓錐曲線的位置關(guān)系題目是常考常新、經(jīng)久不衰的一個(gè)考查重點(diǎn),另外,圓錐曲線中參數(shù)的取值范圍題目、最值題目、定值題目、對(duì)癡光目等綜合性題目也是高考的常考題型.解析幾何題一般來(lái)說(shuō)計(jì)算量較大且有一定的技巧性,需要“精打細(xì)算”,近幾年解析幾何題目的難度有所降低,但還是一個(gè)綜合性較強(qiáng)的題目,對(duì)考生的意志品質(zhì)和數(shù)學(xué)機(jī)智都是一種考驗(yàn),是高考試題中區(qū)分度較大的一個(gè)題目,有可能作為今年高考的一個(gè)壓軸題出現(xiàn).
例1已知點(diǎn)A(-1,0),B(1,-1)和拋物線.,O為坐標(biāo)原點(diǎn),過(guò)點(diǎn)A的動(dòng)直線l交拋物線C于M、P,直線MB交拋物線C于另一點(diǎn)Q,如圖.
(1)若△POM的面積為,求向量與的夾角。
(2)試證實(shí)直線PQ恒過(guò)一個(gè)定點(diǎn)。
高考命題雖說(shuō)千變?nèi)f化,但只要找出相應(yīng)的一些規(guī)律,我們就大膽地猜想高考解答題命題的一些思路和趨勢(shì),指導(dǎo)我們后面的溫習(xí)。對(duì)待高考,我們應(yīng)該采取正確的態(tài)度,再大膽猜測(cè)的同時(shí),更要注重基礎(chǔ)知識(shí)的進(jìn)一步鞏固,多做一些簡(jiǎn)單的綜合練習(xí),進(jìn)步自己的解題能力.
一、高考溫習(xí)建議:
本章內(nèi)容是高考重點(diǎn)考查的內(nèi)容,在每年的高考考試卷中占總分的15%左釉冬分值一直保持穩(wěn)定,一般有2-3道客觀題和一道解答題。選擇題、填空題不僅重視基礎(chǔ)知識(shí)和基本方法,而且具有一定的靈活性與綜合性,難度以中檔題居多,解答題注重考生對(duì)基本方法,數(shù)學(xué)思想的理解、把握和靈活運(yùn)用,綜合性強(qiáng),難度較大,常作為把關(guān)題或壓軸題,其重點(diǎn)是直線與圓錐曲線的位置關(guān)系,求曲線方程,關(guān)于圓錐曲線的最值題目。考查數(shù)形結(jié)合、等價(jià)轉(zhuǎn)換、分類討論、函數(shù)與方程、邏輯推理諸方面的能力,對(duì)思維能力、思維方法的要求較高。
近幾年,解析幾何考查的熱門有以下幾個(gè)
――求曲線方程或點(diǎn)的軌跡
――求參數(shù)的取值范圍
――求值域或最值
――直線與圓錐曲線的位置關(guān)系
以上幾個(gè)題目往往是相互交叉的,例如求軌跡方程時(shí)就要考慮參數(shù)的范圍,而參數(shù)范圍題目或者最值題目,又要結(jié)合直線與圓錐曲線關(guān)系進(jìn)行。
總結(jié)近幾年的高考試題,溫習(xí)時(shí)應(yīng)留意以下題目:
1、重點(diǎn)把握橢圓、雙曲線、拋物線的定義或性質(zhì)
這是由于橢圓、雙曲線、拋物線的定義和性質(zhì)是本章的基石,高考所考的題目都要涉及到這些內(nèi)容,要善于多角度、多層次不斷鞏固強(qiáng)化三基,努力促進(jìn)知識(shí)的深化、升華。
2、重視求曲線的方程或曲線的軌跡
曲線的方程或軌跡題目往往是高考解答題的命題對(duì)象,而且難度較大,所以要把握求曲線的方程或曲線的軌跡的一般方法:定義法、直接法、待定系數(shù)法、代進(jìn)法(中間變量法)、相關(guān)點(diǎn)法等,還應(yīng)留意與向量、三角等知知趣結(jié)合。
3、加強(qiáng)直線與圓錐曲線的位置關(guān)系題目的溫習(xí)
由于直線與圓錐曲線的位置關(guān)系一直為高考的熱門,這類題目常涉及到圓錐曲線的性質(zhì)和直線的基本知識(shí)點(diǎn)、線段的中點(diǎn)、弦長(zhǎng)、垂直題目,因此分析題目時(shí)利用數(shù)形結(jié)合思想和設(shè)而不求法與弦長(zhǎng)公式及韋達(dá)定理聯(lián)系往解決題目,這樣就加強(qiáng)了對(duì)數(shù)學(xué)各種能力的考查,其中著力抓好“運(yùn)算關(guān)”,增強(qiáng)抽象運(yùn)算與變形能力。解析幾何的解題思路輕易分析出來(lái),往往由于運(yùn)算不過(guò)關(guān)中途而廢,在學(xué)習(xí)過(guò)程中,應(yīng)當(dāng)通過(guò)解題,尋求公道運(yùn)算方案,以及簡(jiǎn)化運(yùn)算的基本途徑和方法,親身經(jīng)歷運(yùn)算困難的發(fā)生與克服困難的完整過(guò)程,增強(qiáng)解決復(fù)雜題目的信心。
4、重視對(duì)數(shù)學(xué)思想、方法進(jìn)行回納提煉,達(dá)到優(yōu)化解題思路,簡(jiǎn)化解題過(guò)程的目的。
用好方程思想。解析幾何的題目大部分都以方程形式給定直線和圓錐曲線,因此把直線與圓錐曲線相交的弦長(zhǎng)題目利用韋達(dá)定理進(jìn)行整體處理,就可簡(jiǎn)化解題運(yùn)算量。
用好函數(shù)思想,把握坐標(biāo)法。
二、知識(shí)梳理
●求曲線方程或點(diǎn)的軌跡
求曲線的軌跡方程是解析幾何的基本題目之一,是高考中的一個(gè)熱門和重點(diǎn),在歷年高考中出現(xiàn)的頻率較高,特別是當(dāng)今高考的改革以考查學(xué)生的創(chuàng)新意識(shí)為突破口,注重考查學(xué)生的邏輯思維能力、運(yùn)算能力、分析題目和解決題目的能力,而軌跡方程這一熱門,則能很好地反映學(xué)生在這些方面能力的把握程度。
下面先容幾種常用的方法
(1) 直接法:動(dòng)點(diǎn)滿足的幾何條件本身就是一些幾何量的等量關(guān)系,我們只需把這種關(guān)系“翻譯”成含x、粉底液哪個(gè)牌子好y的等式就得到曲線軌跡方程。
(2) 定義法:其動(dòng)點(diǎn)的軌跡符合某一基本軌跡的定義,則可根據(jù)定義直接求出動(dòng)點(diǎn)的軌跡方程。
(3) 幾何法:若所求的軌跡滿足某些幾何性質(zhì)(如線段中垂線、角平分線性質(zhì)等),可以用幾何法,列出幾何式,再代進(jìn)點(diǎn)的坐標(biāo)較簡(jiǎn)單。
(4) 相關(guān)點(diǎn)法(代進(jìn)法):有些題目中,某動(dòng)點(diǎn)滿足的條件不便用等式列出,但動(dòng)點(diǎn)是隨著另一動(dòng)點(diǎn)(稱為相關(guān)點(diǎn))而運(yùn)動(dòng)的,假如相關(guān)點(diǎn)所滿足的條件是明顯的,這時(shí)我們可以用動(dòng)點(diǎn)坐標(biāo)表示相關(guān)點(diǎn)坐標(biāo),再把相關(guān)點(diǎn)代進(jìn)其所滿足的方程,即可求得動(dòng)點(diǎn)的軌跡方程。
(5) 參數(shù)法:有時(shí)求動(dòng)點(diǎn)應(yīng)滿足的幾何條件不易得出,也無(wú)明顯的相關(guān)點(diǎn),但卻較易發(fā)現(xiàn)這個(gè)動(dòng)點(diǎn)的運(yùn)動(dòng)經(jīng)常受到另一個(gè)變量(角度、斜率、比值、截距)等的制約,即動(dòng)點(diǎn)坐標(biāo)(x、y)中的x、y分別隨另一變量的變化而變化,我們可稱這個(gè)變量為參數(shù),建立軌跡的參數(shù)方程,這種方法叫參數(shù)法。消往參數(shù),即可得到軌跡普通方程。選定參變量要特別留意它的取值范圍對(duì)動(dòng)點(diǎn)坐標(biāo)取值范圍的影響。
(6) 交軌法:在求動(dòng)點(diǎn)軌跡時(shí),有時(shí)會(huì)出現(xiàn)要求兩動(dòng)曲線交點(diǎn)的軌跡題目,這類題目常通過(guò)解方程組得出交點(diǎn)(含參數(shù))的坐標(biāo),再消往參數(shù)求出所求軌跡方程,該法經(jīng)常與參數(shù)法并用。
●求參數(shù)范圍題目
在解析幾何題目中,常用到參數(shù)來(lái)刻劃點(diǎn)和曲線的運(yùn)動(dòng)和變化,對(duì)于參變量范圍的討論,則需要用到變與不變的相互轉(zhuǎn)化,需要用函數(shù)和變量往思考,因此要用函數(shù)和方程的思想作指導(dǎo),利用已知變量的取值范圍以及方程的根的狀況求出參數(shù)的取值范圍。
例1、已知橢圓C: 試確定m的范圍,使得對(duì)于直線l: y = 4x+m 橢圓上有不同的兩點(diǎn)關(guān)于直線 l 對(duì)稱。
例2、已知雙曲線的中心在原點(diǎn),右頂點(diǎn)為A(1,0),點(diǎn)P、Q在雙曲線的右支上,點(diǎn)M (m , 0 ) 到直線AP的間隔為1,
(1)若直線AP的斜率為k ,且 ,求實(shí)數(shù) m 的取值范圍
(2)當(dāng) 時(shí),ΔAPQ的內(nèi)心恰好是點(diǎn)M,求此雙曲線的方程
●值域和最值題目
與解析幾何有關(guān)的函數(shù)的值域或弦長(zhǎng)、面積等的最大值、最小值題目是解析幾何與函數(shù)的綜合題目,需要以函數(shù)為工具來(lái)處理。
解析幾何中的最值題目,一般是根據(jù)條件列出所求目標(biāo)――函數(shù)的關(guān)系式,然后根據(jù)函數(shù)關(guān)系式的特征選用參數(shù)法、配方法、判別式法,應(yīng)用不等式的性質(zhì),以及三角函數(shù)最值法等求出它的最大值或最小值。另外,還可借助圖形,利用數(shù)形結(jié)正當(dāng)求最值。
例1、如圖,已知拋物線 y2 = 4x 的頂點(diǎn)為O,點(diǎn)A 的坐標(biāo)為(5,0),傾斜角為π/4的直線 l 與線段OA相交(不過(guò)O點(diǎn)或A點(diǎn)),且交拋物線于M、N兩點(diǎn),求△AMN面積最大時(shí)直線的方程,并求△AMN的最大面積。
●直線與圓錐曲線關(guān)系題目
1、直線與圓錐曲線的位置關(guān)系題目,從代數(shù)角度轉(zhuǎn)化為一個(gè)方程組實(shí)解個(gè)數(shù)研究(如能數(shù)形結(jié)合,可借助圖形的幾何性質(zhì)則較為簡(jiǎn)便)。即判定直線與圓錐曲線C的位置關(guān)系時(shí),可將直線方程帶進(jìn)曲線C的方程,消往y(有時(shí)消往x更方便),得到一個(gè)關(guān)于x的一元方程 ax2 + bx + c = 0
當(dāng)a=0時(shí),這是一個(gè)一次方程,若方程有解,則 l 與C相交,此時(shí)只有一個(gè)公共點(diǎn)。若C為雙曲線,則 l 平行與雙曲線的漸進(jìn)線;若C為拋物線,則 l 平行與拋物線的對(duì)稱軸。所以當(dāng)直線與雙曲線、拋物線只有一個(gè)公共點(diǎn)時(shí),直線和雙曲線、拋物線可能相交,也可能相切。
當(dāng) a≠0 時(shí),若Δ>0 l與C相交
Δ=0 l與C相切
Δ<0 l與C相離
2、涉及圓錐曲線的弦長(zhǎng),一般用弦長(zhǎng)公式結(jié)合韋達(dá)定理求解。
解決弦中點(diǎn)有兩種常用辦法:一是利用韋達(dá)定理及中點(diǎn)坐標(biāo)公式;二是利用端點(diǎn)在曲線上,坐標(biāo)滿足方程,作差構(gòu)造出中點(diǎn)坐標(biāo)和斜率的關(guān)系(點(diǎn)差法)
中點(diǎn)弦題目就是當(dāng)直線與圓錐曲線相交時(shí),得到一條顯冬進(jìn)一步研究弦的中點(diǎn)的題目. 中點(diǎn)弦題目是解析幾何中的重點(diǎn)和熱門題目,在高考試題中經(jīng)常出現(xiàn). 解決圓錐曲線的中點(diǎn)弦題目,“點(diǎn)差法”是一個(gè)行之有效的方法,“點(diǎn)差法”顧名思義是代點(diǎn)作差的辦法. 其步驟可扼要地?cái)⑹鰹椋孩僭O(shè)出弦的兩個(gè)端點(diǎn)的坐標(biāo);②將端點(diǎn)的坐標(biāo)代進(jìn)圓錐曲線方程相減;③得到弦的中點(diǎn)坐標(biāo)與所在直線的斜率的關(guān)系,從而求出直線的方程;④ 作簡(jiǎn)
要的檢驗(yàn). 本文試圖通過(guò)對(duì)一道高考試題解法的探討,談點(diǎn)個(gè)人見(jiàn)解.
一、高考試題
橢圓C: + = 1(a> b > 0)的兩個(gè)焦點(diǎn)為F1,F(xiàn)2,點(diǎn)P在橢圓C上,且PF1⊥F1F2,|PF1|=, |PF2| = .
(1) 求橢圓C的方程;
(2) 若直線l過(guò)圓x2 + y2 + 4x - 2y = 0 的圓心M,交橢圓C于A,B兩點(diǎn),竊讀,B關(guān)于點(diǎn)M對(duì)稱,求直線l的方程.
二、解題思路
第(1)題的解法不再贅述,答案是:+ = 1,在此基礎(chǔ)上研究第(2)題的解法.
1. 運(yùn)用方程組的思路
設(shè)A(x1,y1),B(x2,y2),已知圓的方程為(x + 2)2 + (y - 1)2 = 5,所以圓心M的坐標(biāo)為(-2,1),從而可設(shè)直線l的方程為:y= k(x+ 2)+1.
∴y= k(x+ 2)+ 1,+=1.消y得
(4 + 9k2)x2 + (36k2 + 18k)x + 36k2 + 36k - 27 = 0.
∵ A,B關(guān)于點(diǎn)M對(duì)稱,
∴ = - = -2,解得 k =.
∴ 直線l的方程為:8x - 9y + 25 = 0.
2. 運(yùn)用“點(diǎn)差法”的思路
已知圓的方程為(x+ 2)2+ (y- 1)2= 5,所以圓心M的坐標(biāo)為(-2,1).
設(shè)A(x1,y1),B(x2,y2),由題意x1≠x2且
+ = 1(1)+= 1(2)
由(1)- (2)得
+ = 0(3)
由于A,B關(guān)于點(diǎn)M對(duì)稱,所以x1 + x2 = -4,y1 + y2 = 2,代進(jìn)(3)得 k1 = =,所以,直線l的方程為:8x - 9y + 25 = 0. 經(jīng)檢驗(yàn),所求直線方程符合題意.
三、對(duì)兩種思路的熟悉
思路1運(yùn)算較復(fù)雜,尤其是消元得到方程這一步,很多學(xué)生是不能順利過(guò)關(guān)的;思路2運(yùn)算較簡(jiǎn)潔,學(xué)生易把握. 對(duì)于兩種思路都必須分析到:直線l經(jīng)過(guò)圓心,而且圓心是弦的中點(diǎn). 這些方法在考題中經(jīng)常有所涉及.
四、對(duì)“點(diǎn)差法”的思考
1. “點(diǎn)差法”使用條件的反思
“點(diǎn)差法”使用起來(lái)較為簡(jiǎn)潔,那么使用“點(diǎn)差法”的條件是什么?
假設(shè)一條直線與曲線mx2 + ny2 = 1(n,m是不為零的常數(shù),且不同時(shí)為負(fù)數(shù))相交于A,B兩點(diǎn),設(shè)A(x1,x2),B(x2,y2),則mx12 + ny12= 1,mx22 + ny22 = 1, 兩式相減有:m(x1 - x2)(x1 + x2) = -n(y1 - y2)(y1 + y2). 其中x1+x2與y1 + y2和線段AB的中點(diǎn)坐標(biāo)有關(guān); 為AB的斜率. 由此可見(jiàn),知道其中一個(gè)可以求出另外一個(gè),意思是說(shuō):要用“點(diǎn)差法”,需知道AB的中點(diǎn)和AB的斜率之一才可求另一個(gè). 然后進(jìn)行扼要的檢驗(yàn).
2. 先容一種處理中點(diǎn)弦題目時(shí)的巧妙的獨(dú)到的解法
例題 已知雙曲線x2 - = 1,問(wèn)是否存在直線l,使得M(1,1)為直線l被雙曲線所截弦AB的中點(diǎn).若存在,求出直線l的方程;若不存在,請(qǐng)說(shuō)明理由.
由題意得M(1,1)為顯讀B的中點(diǎn),可設(shè)A(1+ s,1+ t),B(1- s,1- t),(s,t∈T訂,由于A,B,M不重合可知, s,t不全為零. 又點(diǎn)A,B在雙曲線x2-= 1上,將點(diǎn)的坐標(biāo)代進(jìn)方程得
(1+ s)2-= 1(1)(1- s)2-= 1(2)
(1)+ (2) 可得s2= t2 (3)
(1)- (2) 可得t = 2s (4)
將(4)代進(jìn)(3)可得s= 0,t= 0,不可能,故不存在這樣的直線.
這里我們回納一下解題思路:
已知直線l與圓錐曲線:ax2 + by2 = 1(a,b使得方程為圓錐曲線)相交于A,B兩點(diǎn),設(shè)中點(diǎn)為M(m,n),求直線l方程.
解題思路 設(shè)A(m+ s,n+ t),B(m - s,n - t), (s,t∈T訂,由于A,B,M不重合可知,s,t不全為零. 又點(diǎn)A,B在雙曲線ax2 + by2 = 1上,將點(diǎn)的坐標(biāo)代進(jìn)方程得a(m + s)2- b(n+ t)2= 1, a(m-s)2 - b(n- t)2= 1.解得:ams = bnt,am2 +s2 = bn2 + t2. (由于這里全是字母運(yùn)算,表達(dá)式復(fù)雜,不再求出所有的表達(dá)式的具體形式,只是談一下思路)進(jìn)一步解出s,t的值,從而知道A,B的坐標(biāo),運(yùn)用兩點(diǎn)式求出直線l的方程。
篇4:高中數(shù)學(xué)解題策略與技巧
史上最全高中數(shù)學(xué)解題策略與技巧
數(shù)學(xué)在人類歷史發(fā)展和社會(huì)生活中發(fā)揮著不可替代的作用,也是學(xué)習(xí)和研究現(xiàn)代科學(xué)技術(shù)必不可少的基本工具。下面有途高考網(wǎng)小編分享一篇史上最全高中數(shù)學(xué)解題策略與技巧,希望能幫到各位同學(xué)!
數(shù)學(xué)高考題的容量在120分鐘時(shí)間內(nèi)完成大小26個(gè)題,時(shí)間很緊張,不允許做大量細(xì)致的解后檢驗(yàn),所以要盡量準(zhǔn)確運(yùn)算(關(guān)鍵步驟,力求準(zhǔn)確,寧慢勿快),立足一次成功。解題速度是建立在解題準(zhǔn)確度基礎(chǔ)上,更何況數(shù)學(xué)題的中間數(shù)據(jù)常常不但從“數(shù)量”上,而且從“性質(zhì)”上影響著后繼各步的解答。所以,在以快為上的前提下,要穩(wěn)扎穩(wěn)打,層層有據(jù),步步準(zhǔn)確,不能為追求速度而丟掉準(zhǔn)確度,甚至丟掉重要的得分步驟,假如速度與準(zhǔn)確不可兼得的說(shuō),就只好舍快求對(duì)了,因?yàn)榻獯鸩粚?duì),再快也無(wú)意義。
考試的又一個(gè)特點(diǎn)是以卷面為唯一依據(jù)。這就要求不但會(huì)而且要對(duì)、對(duì)且全,全而規(guī)范。會(huì)而不對(duì),令人惋惜;對(duì)而不全,得分不高;表述不規(guī)范、字跡不工整又是造成高考數(shù)學(xué)試卷非智力因素失分的一大方面。因?yàn)樽舟E潦草,會(huì)使閱卷老師的第一印象不良,進(jìn)而使閱卷老師認(rèn)為考生學(xué)習(xí)不認(rèn)真、基本功不過(guò)硬、“感情分” 也就相應(yīng)低了,此所謂心理學(xué)上的“光環(huán)效應(yīng)”。“書寫要工整,卷面能得分”講的也正是這個(gè)道理。
會(huì)做的題目當(dāng)然要力求做對(duì)、做全、得滿分,而更多的問(wèn)題是對(duì)不能全面完成的題目如何分段得分。下面有兩種常用方法。
1.缺步解答。
對(duì)一個(gè)疑難問(wèn)題,確實(shí)啃不動(dòng)時(shí),一個(gè)明智的解題方法是:將它劃分為一個(gè)個(gè)子問(wèn)題或一系列的步驟,先解決問(wèn)題的一部分,即能解決到什么程度就解決到什么程度,能演算幾步就寫幾步,每進(jìn)行一步就可得到這一步的分?jǐn)?shù)。如從最初的把文字語(yǔ)言譯成符號(hào)語(yǔ)言,把條件和目標(biāo)譯成數(shù)學(xué)表達(dá)式,設(shè)應(yīng)用題的未知數(shù),設(shè)軌跡題的動(dòng)點(diǎn)坐標(biāo),依題意正確畫出圖形等,都能得分。還有象完成數(shù)學(xué)歸納法的第一步,分類討論,反證法的簡(jiǎn)單情形等,都能得分。而且可望在上述處理中,從感性到理性,從特殊到一般,從局部到整體,產(chǎn)生頓悟,形成思路,獲得解題成功。
2.跳步解答。
解題過(guò)程卡在一中間環(huán)節(jié)上時(shí),可以承認(rèn)中間結(jié)論,往下推,看能否得到正確結(jié)論,如得不出,說(shuō)明此途徑不對(duì),立即否得到正確結(jié)論,如得不出,說(shuō)明此途徑不對(duì),立即改變方向,尋找它途;如能得到預(yù)期結(jié)論,就再回頭集中力量攻克這一過(guò)渡環(huán)節(jié)。若因時(shí)間限制,中間結(jié)論來(lái)不及得到證實(shí),就只好跳過(guò)這一步,寫出后繼各步,一直做到底;另外,若題目有兩問(wèn),第一問(wèn)做不上,可以第一問(wèn)為“已知”,完成第二問(wèn),這都叫跳步解答。也許后來(lái)由于解題的正遷移對(duì)中間步驟想起來(lái)了,或在時(shí)間允許的情況下,經(jīng)努力而攻下了中間難點(diǎn),可在相應(yīng)題尾補(bǔ)上。
發(fā)散一般對(duì)于一個(gè)較一般的問(wèn)題,若一時(shí)不能取得一般思路,可以采取化一般為特殊(如用特殊法解選擇題),化抽象為具體,化整體為局部,化參量為常量,化較弱條件為較強(qiáng)條件,等等。總之,退到一個(gè)你能夠解決的程度上,通過(guò)對(duì)“特殊”的思考與解決,啟發(fā)思維,達(dá)到對(duì)“一般”的解決。
解決應(yīng)用性問(wèn)題,首先要全面調(diào)查題意,迅速接受概念,此為“面”;透過(guò)冗長(zhǎng)敘述,抓住重點(diǎn)詞句,提出重點(diǎn)數(shù)據(jù),此為“點(diǎn)”;綜合聯(lián)系,提煉關(guān)系,依靠數(shù)學(xué)方法,建立數(shù)學(xué)模型,此為“線”,如此將應(yīng)用性問(wèn)題轉(zhuǎn)化為純數(shù)學(xué)問(wèn)題。當(dāng)然,求解過(guò)程和結(jié)果都不能離開(kāi)實(shí)際背景。
對(duì)一個(gè)問(wèn)題正面思考發(fā)生思維受阻時(shí),用逆向思維的方法去探求新的解題途徑,往往能得到突破性的進(jìn)展,如果順向推有困難就逆推,直接證有困難就反證,如用分析法,從肯定結(jié)論或中間步驟入手,找充分條件;用反證法,從否定結(jié)論入手找必要條件。
以上《史上最全高中數(shù)學(xué)解題策略與技巧》由有途高考網(wǎng)收編整理,也可以通過(guò)基礎(chǔ)知識(shí)的訓(xùn)練,對(duì)已學(xué)的知識(shí)進(jìn)行鞏固和提高,具備學(xué)習(xí)新知識(shí)所必需的基本能力,從而對(duì)新知識(shí)的學(xué)習(xí)和掌握起到促進(jìn)作用。

篇5:高中數(shù)學(xué)解題策略與技巧
高中數(shù)學(xué)知識(shí)點(diǎn)大全高中數(shù)學(xué)平面解析幾何學(xué)習(xí)方法!在高中數(shù)學(xué)知識(shí)體系中,平面解析幾何是其中很大的一塊,涉及到直線及其方程、線性規(guī)劃、圓及其方程、橢圓及其方程、拋物線及其方程、雙曲線及其方程以及曲線與方程的關(guān)系及其圖像等具體的知識(shí)點(diǎn)。在高考的考查中,又可以將上述的7個(gè)知識(shí)點(diǎn)進(jìn)行綜合考查,更是增加了考查的難度。要想學(xué)好這部分點(diǎn),在高考總不丟分,以下幾點(diǎn)是很關(guān)鍵的。
高中數(shù)學(xué)解析幾何解題方法突破第一點(diǎn),夯實(shí)基礎(chǔ)知識(shí)。
對(duì)于基礎(chǔ)知識(shí),不僅一個(gè)知識(shí)點(diǎn)都要熟稔于心,還要有能力將這些零散的知識(shí)點(diǎn)串聯(lián)起來(lái)。只有這樣,才能形成屬于自己的知識(shí)框架,才能更從容的應(yīng)對(duì)考試。
(一)對(duì)于直線及其方程部分,首先我們要從總體上把握住兩突破點(diǎn):
①明確基本的概念。在直線部分,最主要的概念就是直線的斜率、傾斜角以及斜率和傾斜角之間的關(guān)系。傾斜角α的取值范圍是突破[0,π),當(dāng)傾斜角不等于90°的時(shí)候,斜率k=tanα;當(dāng)傾斜角=90°的時(shí)候,斜率不存在。
②直線的方程有不同的形式,同學(xué)們應(yīng)該從不同的角度去歸類總結(jié)。角度一:以直線的斜率是否存在進(jìn)行歸類,可以將直線的方程分為兩類。角度二:從傾斜角α分別在[0,π/2)、α=π/2和(π/2,π)的范圍內(nèi),認(rèn)識(shí)直線的特點(diǎn)。以此為基礎(chǔ)突破,將直線方程的五種不同的形式套入其中。直線方程的不同形式突破需要滿足的條件以及局限性是不同的,我們也要加以總結(jié)。
(二)對(duì)于線性規(guī)劃部分,首先我們要看得懂線性規(guī)劃方程組所表示的區(qū)域。在這里我們可以采用原點(diǎn)法,如果滿足條件,那么區(qū)域包含原點(diǎn);如果原點(diǎn)帶入不滿足條件,那么代表的區(qū)域不包含原點(diǎn)。
(三)對(duì)于圓及其方程,我們要熟記圓的標(biāo)準(zhǔn)方程和一般方程分別代表的含義。對(duì)于圓部分的學(xué)習(xí),我們要拓展初中學(xué)過(guò)的一切與圓有關(guān)的知識(shí),包括三角形的內(nèi)切圓、外切圓、圓周角、圓心角等概念以及點(diǎn)與圓的位置關(guān)系、圓與圓的位置關(guān)系、圓的內(nèi)切正多邊形的特征等。只有這樣,才能更加完整的掌握與圓有關(guān)的所有的知識(shí)。
(四)對(duì)于橢圓、拋物線、雙曲線,我們要分別從其兩個(gè)定義出發(fā),明白焦點(diǎn)的來(lái)源、準(zhǔn)線方程以及相關(guān)的焦距、頂點(diǎn)、突破離心率、通徑的概念。每種圓錐曲線存在焦點(diǎn)在X軸和Y軸上的情況,要分別進(jìn)行掌握。
高中數(shù)學(xué)解析幾何解題方法突破第二點(diǎn),學(xué)習(xí)基本解題思想。
對(duì)于平面幾何部分的學(xué)習(xí),最基本的解題思想就是數(shù)形結(jié)合,還包括函數(shù)思想、方程思想、轉(zhuǎn)化思想等。要想掌握數(shù)形結(jié)合這種思想方法,首先同學(xué)們心中要有坐標(biāo)軸,要掌握好學(xué)過(guò)的各種平面幾何的概念。
其次,要掌握解決不同問(wèn)題的方法。對(duì)于不同的題型,同學(xué)們要掌握不同的解題方法,并將這種解題方法及其例題記錄在筆記本上。對(duì)于向量方法,最長(zhǎng)用的地方就解決與斜率有關(guān)的問(wèn)題;對(duì)于“設(shè)而不求”的方法,最常用到的地方就是兩種不同的平面幾何圖形相交的情況下求弦長(zhǎng)的問(wèn)題;設(shè)點(diǎn)法,最長(zhǎng)用到的地方就是兩種曲線相切以及求最值得問(wèn)題等。同學(xué)們要分門別類的進(jìn)行總結(jié),才能達(dá)到事半功倍的效果。
高中數(shù)學(xué)解析幾何解題方法突破第三點(diǎn),要進(jìn)行反復(fù)的思考。
對(duì)于每一個(gè)平面解析幾何的題目,做題之前,要想一想,應(yīng)該怎么做,有幾種辦法可以解決,哪種辦法可能更有效,更簡(jiǎn)便。在做題的過(guò)程中,要養(yǎng)成良好的解題習(xí)慣,包括將解題步驟清晰的寫下來(lái),以便檢查的時(shí)候核對(duì)。在解完題之后,對(duì)解題之前的各種疑問(wèn)做出總結(jié),錯(cuò)的地方為什么錯(cuò)了,對(duì)的地方是否還有改進(jìn)的余地。只有這樣,才能起到舉一反三的效果。
突破第四點(diǎn),鍛煉自己的口算能力。
在解決解析幾何的問(wèn)題的過(guò)程中,要涉及到大量的計(jì)算問(wèn)題。要在平時(shí)自覺(jué)的鍛煉自己的口算能力。在解題的過(guò)程中要有耐心,給自己信心,一步一步的往下走。因?yàn)橥瑢W(xué)們掌握的方法都是前輩屢試不爽的方法,因此肯定會(huì)有準(zhǔn)確的答案的。
高中數(shù)學(xué)解析幾何解題方法總之,平面解析幾何部分涉及到的很多的知識(shí)點(diǎn),與前面學(xué)習(xí)過(guò)的函數(shù)、不等式、三角函數(shù)等知識(shí)都有很多的交叉。同學(xué)們要不斷的進(jìn)行總結(jié)提高,才能在高考中從容應(yīng)對(duì)。
篇6:高中數(shù)學(xué)解題策略與技巧
高中數(shù)學(xué)正確的解題方法有哪些
掌握正確有效的解題方法和解題技巧,不僅可以幫助同學(xué)們培養(yǎng)好的數(shù)學(xué)素養(yǎng),也是提升學(xué)生數(shù)學(xué)解題效率的關(guān)鍵。下面有途高考網(wǎng)小編整理了《高中數(shù)學(xué)正確的解題方法有哪些》,抓緊收藏哦!
考前要摒棄雜念,排除干擾思緒,使大腦處于“空白”狀態(tài),創(chuàng)設(shè)數(shù)學(xué)情境,進(jìn)而醞釀數(shù)學(xué)思維,提前進(jìn)入“角色”,通過(guò)清點(diǎn)用具、暗示重要知識(shí)和方法、提醒常見(jiàn)解題誤區(qū)和自己易出現(xiàn)的錯(cuò)誤等,進(jìn)行針對(duì)性的自我安慰,從而減輕壓力,輕裝上陣,穩(wěn)定情緒、增強(qiáng)信心,使思維單一化、數(shù)學(xué)化、以平穩(wěn)自信、積極主動(dòng)的心態(tài)準(zhǔn)備應(yīng)考。
良好的開(kāi)端是成功的一半,從考試的心理角度來(lái)說(shuō),這確實(shí)是很有道理的,拿到試題后,不要急于求成、立即下手解題,而應(yīng)通覽一遍整套試題,摸透題情,然后穩(wěn)操一兩個(gè)易題熟題,讓自己產(chǎn)生“旗開(kāi)得勝”的快意,從而有一個(gè)良好的開(kāi)端,以振奮精神,鼓舞信心,很快進(jìn)入最佳思維狀態(tài),即發(fā)揮心理學(xué)所謂的“門坎效應(yīng)”,之后做一題得一題,不斷產(chǎn)生正激勵(lì),穩(wěn)拿中低,見(jiàn)機(jī)攀高。
集中注意力是考試成功的保證,一定的神經(jīng)亢奮和緊張,能加速神經(jīng)聯(lián)系,有益于積極思維,要使注意力高度集中,思維異常積極,這叫內(nèi)緊,但緊張程度過(guò)重,則會(huì)走向反面,形成怯場(chǎng),產(chǎn)生焦慮,抑制思維,所以又要清醒愉快,放得開(kāi),這叫外松。
有些考生只知道考場(chǎng)上一味地要快,結(jié)果題意未清,條件未全,便急于解答,豈不知欲速則不達(dá),結(jié)果是思維受阻或進(jìn)入死胡同,導(dǎo)致失敗。應(yīng)該說(shuō),審題要慢,解答要快。審題是整個(gè)解題過(guò)程的“基礎(chǔ)工程”,題目本身是“怎樣解題”的信息源,必須充分搞清題意,綜合所有條件,提煉全部線索,形成整體認(rèn)識(shí),為形成解題思路提供全面可靠的依據(jù)。而思路一旦形成,則可盡量快速完成。
以上《高中數(shù)學(xué)正確的解題方法有哪些》由有途高考網(wǎng)收編整理,通覽全卷,將簡(jiǎn)單題順手完成的情況下,情緒趨于穩(wěn)定,情境趨于單一,大腦趨于亢奮,思維趨于積極,之后便是發(fā)揮臨場(chǎng)解題能力的黃金季節(jié)了。

篇7:高中數(shù)學(xué)解題策略與技巧
對(duì)于數(shù)學(xué)這門功課,如果能夠掌握正確有效的解題方法和技巧,不僅可以幫助我們培養(yǎng)良好的數(shù)學(xué)素養(yǎng),而且也能提升學(xué)生數(shù)學(xué)解題效率,下面老師將給大家分享高中數(shù)學(xué)高分做題解題的11種方法和思路,希望對(duì)大家學(xué)好數(shù)學(xué)有所幫助!
高分?jǐn)?shù)學(xué)解題方法1:調(diào)理大腦思緒,提前進(jìn)入數(shù)學(xué)情境
考前要摒棄雜念,排除干擾思緒,使大腦處于“空白”狀態(tài),創(chuàng)設(shè)數(shù)學(xué)情境,進(jìn)而醞釀數(shù)學(xué)思維,提前進(jìn)入“角色”,通過(guò)清點(diǎn)用具、暗示重要知識(shí)和方法、提醒常見(jiàn)解題誤區(qū)和自己易出現(xiàn)的錯(cuò)誤等,進(jìn)行針對(duì)性的自我安慰,從而減輕壓力,輕裝上陣,穩(wěn)定情緒、增強(qiáng)信心,使思維單一化、數(shù)學(xué)化、以平穩(wěn)自信、積極主動(dòng)的心態(tài)準(zhǔn)備應(yīng)考。
高分?jǐn)?shù)學(xué)解題方法2:沉著應(yīng)戰(zhàn),確保旗開(kāi)得勝,以利振奮精神
良好的開(kāi)端是成功的一半,從考試的心理角度來(lái)說(shuō),這確實(shí)是很有道理的,拿到試題后,不要急于求成、立即下手解題,而應(yīng)通覽一遍整套試題,摸透題情,然后穩(wěn)操一兩個(gè)易題熟題,讓自己產(chǎn)生“旗開(kāi)得勝”的快意,從而有一個(gè)良好的開(kāi)端,以振奮精神,鼓舞信心,很快進(jìn)入最佳思維狀態(tài),即發(fā)揮心理學(xué)所謂的“門坎效應(yīng)”,之后做一題得一題,不斷產(chǎn)生正激勵(lì),穩(wěn)拿中低,見(jiàn)機(jī)攀高。
高分?jǐn)?shù)學(xué)解題方法3:“內(nèi)緊外松”,集中注意,消除焦慮怯場(chǎng)
集中注意力是考試成功的保證,一定的神經(jīng)亢奮和緊張,能加速神經(jīng)聯(lián)系,有益于積極思維,要使注意力高度集中,思維異常積極,這叫內(nèi)緊,但緊張程度過(guò)重,則會(huì)走向反面,形成怯場(chǎng),產(chǎn)生焦慮,抑制思維,所以又要清醒愉快,放得開(kāi),這叫外松。
高分?jǐn)?shù)學(xué)解題方法4:一“慢”一“快”,相得益彰
有些考生只知道考場(chǎng)上一味地要快,結(jié)果題意未清,條件未全,便急于解答,豈不知欲速則不達(dá),結(jié)果是思維受阻或進(jìn)入死胡同,導(dǎo)致失敗。應(yīng)該說(shuō),審題要慢,解答要快。審題是整個(gè)解題過(guò)程的“基礎(chǔ)工程”,題目本身是“怎樣解題”的信息源,必須充分搞清題意,綜合所有條件,提煉全部線索,形成整體認(rèn)識(shí),為形成解題思路提供全面可靠的依據(jù)。而思路一旦形成,則可盡量快速完成。
高分?jǐn)?shù)學(xué)解題方法5:“六先六后”,因人因卷制宜
在通覽全卷,將簡(jiǎn)單題順手完成的情況下,情緒趨于穩(wěn)定,情境趨于單一,大腦趨于亢奮,思維趨于積極,之后便是發(fā)揮臨場(chǎng)解題能力的黃金季節(jié)了,這時(shí),考生可依自己的解題習(xí)慣和基本功,結(jié)合整套試題結(jié)構(gòu),選擇執(zhí)行“六先六后”的戰(zhàn)術(shù)原則。
1.先易后難
就是先做簡(jiǎn)單題,再做綜合題,應(yīng)根據(jù)自己的實(shí)際,果斷跳過(guò)啃不動(dòng)的題目,從易到難,也要注意認(rèn)真對(duì)待每一道題,力求有效,不能走馬觀花,有難就退,傷害解題情緒。
2.先熟后生
通覽全卷,可以得到許多有利的積極因素,也會(huì)看到一些不利之處,對(duì)后者,不要驚慌失措,應(yīng)想到試題偏難對(duì)所有考生也難,通過(guò)這種暗示,確保情緒穩(wěn)定,對(duì)全卷整體把握之后,就可實(shí)施先熟后生的方法,即先做那些內(nèi)容掌握比較到家、題型結(jié)構(gòu)比較熟悉、解題思路比較清晰的題目。這樣,在拿下熟題的同時(shí),可以使思維流暢、超常發(fā)揮,達(dá)到拿下中高檔題目的目的。
3.先同后異
先做同科同類型的題目,思考比較集中,知識(shí)和方法的溝通比較容易,有利于提高單位時(shí)間的效益。高考題一般要求較快地進(jìn)行“興奮灶”的轉(zhuǎn)移,而“先同后異”,可以避免“興奮灶”過(guò)急、過(guò)頻的跳躍,從而減輕大腦負(fù)擔(dān),保持有效精力,
4.先小后大
小題一般是信息量少、運(yùn)算量小,易于把握,不要輕易放過(guò),應(yīng)爭(zhēng)取在大題之前盡快解決,從而為解決大題贏得時(shí)間,創(chuàng)造一個(gè)寬松的心理基矗
5.先點(diǎn)后面
近年的高考數(shù)學(xué)解答題多呈現(xiàn)為多問(wèn)漸難式的“梯度題”,解答時(shí)不必一氣審到底,應(yīng)走一步解決一步,而前面問(wèn)題的解決又為后面問(wèn)題準(zhǔn)備了思維基礎(chǔ)和解題條件,所以要步步為營(yíng),由點(diǎn)到面6.先高后低。即在考試的后半段時(shí)間,要注重時(shí)間效益,如估計(jì)兩題都會(huì)做,則先做高分題;估計(jì)兩題都不易,則先就高分題實(shí)施“分段得分”,以增加在時(shí)間不足前提下的得分。
高分?jǐn)?shù)學(xué)解題方法6:確保運(yùn)算準(zhǔn)確,立足一次成功
數(shù)學(xué)高考題的容量在120分鐘時(shí)間內(nèi)完成大小26個(gè)題,時(shí)間很緊張,不允許做大量細(xì)致的解后檢驗(yàn),所以要盡量準(zhǔn)確運(yùn)算(關(guān)鍵步驟,力求準(zhǔn)確,寧慢勿快),立足一次成功。解題速度是建立在解題準(zhǔn)確度基礎(chǔ)上,更何況數(shù)學(xué)題的中間數(shù)據(jù)常常不但從“數(shù)量”上,而且從“性質(zhì)”上影響著后繼各步的解答。所以,在以快為上的前提下,要穩(wěn)扎穩(wěn)打,層層有據(jù),步步準(zhǔn)確,不能為追求速度而丟掉準(zhǔn)確度,甚至丟掉重要的得分步驟,假如速度與準(zhǔn)確不可兼得的說(shuō),就只好舍快求對(duì)了,因?yàn)榻獯鸩粚?duì),再快也無(wú)意義。
高分?jǐn)?shù)學(xué)解題方法7:講求規(guī)范書寫,力爭(zhēng)既對(duì)又全
考試的又一個(gè)特點(diǎn)是以卷面為唯一依據(jù)。這就要求不但會(huì)而且要對(duì)、對(duì)且全,全而規(guī)范。會(huì)而不對(duì),令人惋惜;對(duì)而不全,得分不高;表述不規(guī)范、字跡不工整又是造成高考數(shù)學(xué)試卷非智力因素失分的一大方面。因?yàn)樽舟E潦草,會(huì)使閱卷老師的第一印象不良,進(jìn)而使閱卷老師認(rèn)為考生學(xué)習(xí)不認(rèn)真、基本功不過(guò)硬、“感情分”也就相應(yīng)低了,此所謂心理學(xué)上的“光環(huán)效應(yīng)”。“書寫要工整,卷面能得分”講的也正是這個(gè)道理。
高分?jǐn)?shù)學(xué)解題方法8:面對(duì)難題,講究方法,爭(zhēng)取得分
會(huì)做的題目當(dāng)然要力求做對(duì)、做全、得滿分,而更多的問(wèn)題是對(duì)不能全面完成的題目如何分段得分。下面有兩種常用方法。
1.缺步解答。
對(duì)一個(gè)疑難問(wèn)題,確實(shí)啃不動(dòng)時(shí),一個(gè)明智的解題方法是:將它劃分為一個(gè)個(gè)子問(wèn)題或一系列的步驟,先解決問(wèn)題的一部分,即能解決到什么程度就解決到什么程度,能演算幾步就寫幾步,每進(jìn)行一步就可得到這一步的分?jǐn)?shù)。如從最初的把文字語(yǔ)言譯成符號(hào)語(yǔ)言,把條件和目標(biāo)譯成數(shù)學(xué)表達(dá)式,設(shè)應(yīng)用題的未知數(shù),設(shè)軌跡題的動(dòng)點(diǎn)坐標(biāo),依題意正確畫出圖形等,都能得分。還有象完成數(shù)學(xué)歸納法的第一步,分類討論,反證法的簡(jiǎn)單情形等,都能得分。而且可望在上述處理中,從感性到理性,從特殊到一般,從局部到整體,產(chǎn)生頓悟,形成思路,獲得解題成功。
2.跳步解答。
解題過(guò)程卡在一中間環(huán)節(jié)上時(shí),可以承認(rèn)中間結(jié)論,往下推,看能否得到正確結(jié)論,如得不出,說(shuō)明此途徑不對(duì),立即否得到正確結(jié)論,如得不出,說(shuō)明此途徑不對(duì),立即改變方向,尋找它途;如能得到預(yù)期結(jié)論,就再回頭集中力量攻克這一過(guò)渡環(huán)節(jié)。若因時(shí)間限制,中間結(jié)論來(lái)不及得到證實(shí),就只好跳過(guò)這一步,寫出后繼各步,一直做到底;另外,若題目有兩問(wèn),第一問(wèn)做不上,可以第一問(wèn)為“已知”,完成第二問(wèn),這都叫跳步解答。也許后來(lái)由于解題的正遷移對(duì)中間步驟想起來(lái)了,或在時(shí)間允許的情況下,經(jīng)努力而攻下了中間難點(diǎn),可在相應(yīng)題尾補(bǔ)上。
高分?jǐn)?shù)學(xué)解題方法9:以退求進(jìn),立足特殊
發(fā)散一般對(duì)于一個(gè)較一般的問(wèn)題,若一時(shí)不能取得一般思路,可以采取化一般為特殊(如用特殊法解選擇題),化抽象為具體,化整體為局部,化參量為常量,化較弱條件為較強(qiáng)條件,等等。總之,退到一個(gè)你能夠解決的程度上,通過(guò)對(duì)“特殊”的思考與解決,啟發(fā)思維,達(dá)到對(duì)“一般”的解決。
高分?jǐn)?shù)學(xué)解題方法10:應(yīng)用性問(wèn)題思路:面—點(diǎn)—線
解決應(yīng)用性問(wèn)題,首先要全面調(diào)查題意,迅速接受概念,此為“面”;透過(guò)冗長(zhǎng)敘述,抓住重點(diǎn)詞句,提出重點(diǎn)數(shù)據(jù),此為“點(diǎn)”;綜合聯(lián)系,提煉關(guān)系,依靠數(shù)學(xué)方法,建立數(shù)學(xué)模型,此為“線”,如此將應(yīng)用性問(wèn)題轉(zhuǎn)化為純數(shù)學(xué)問(wèn)題。當(dāng)然,求解過(guò)程和結(jié)果都不能離開(kāi)實(shí)際背景。
高分?jǐn)?shù)學(xué)解題方法11:執(zhí)果索因,逆向思考
對(duì)一個(gè)問(wèn)題正面思考發(fā)生思維受阻時(shí),用逆向思維的方法去探求新的解題途徑,往往能得到突破性的進(jìn)展,如果順向推有困難就逆推,直接證有困難就反證,如用分析法,從肯定結(jié)論或中間步驟入手,找充分條件;用反證法,從否定結(jié)論入手找必要條件。
篇8:高中數(shù)學(xué)解題策略與技巧
學(xué)習(xí)高中數(shù)學(xué)就是學(xué)習(xí)解題,我們知道,學(xué)習(xí)數(shù)學(xué)需要通過(guò)復(fù)習(xí)來(lái)循序漸進(jìn)地提高自己的數(shù)學(xué)能力。有的同學(xué)簡(jiǎn)單地把復(fù)習(xí)理解為做大量的題目,也有的同學(xué)認(rèn)為復(fù)習(xí)就是記憶、背誦課本中的有關(guān)概念、定理、公式等。可見(jiàn),許多同學(xué)對(duì)復(fù)習(xí)的認(rèn)識(shí)還存在誤區(qū):沒(méi)有真正認(rèn)識(shí)到數(shù)學(xué)學(xué)科的特點(diǎn),在復(fù)習(xí)方法上沒(méi)有和其他學(xué)科區(qū)別開(kāi)來(lái)。
高中數(shù)學(xué)是應(yīng)用性很強(qiáng)的學(xué)科,學(xué)習(xí)數(shù)學(xué)就是學(xué)習(xí)數(shù)學(xué)解題方法與技巧。搞題海戰(zhàn)術(shù)的方式、方法固然是不對(duì)的,但離開(kāi)解題來(lái)學(xué)習(xí)數(shù)學(xué)同樣也是錯(cuò)誤的。其中的關(guān)鍵在于對(duì)待題目的態(tài)度和處理解題的方式上。
——首先是精選題目,做到少而精。只有解決質(zhì)量高的、有代表性的題目才能達(dá)到事半功倍的效果。然而絕大多數(shù)的同學(xué)還沒(méi)有辨別、分析題目好壞的能力,這就需要在老師的指導(dǎo)下來(lái)選擇復(fù)習(xí)的練習(xí)題,以了解高考題的形式、難度。
——其次是分析題目。解答任何一個(gè)數(shù)學(xué)題目之前,都要先進(jìn)行分析。相對(duì)于比較難的題目,分析更顯得尤為重要。我們知道,解決數(shù)學(xué)問(wèn)題實(shí)際上就是在題目的已知條件和待求結(jié)論中架起聯(lián)系的橋梁,也就是在分析題目中已知與待求之間差異的基礎(chǔ)上,化歸和消除這些差異。當(dāng)然在這個(gè)過(guò)程中也反映出對(duì)數(shù)學(xué)基礎(chǔ)知識(shí)掌握的熟練程度、理解程度和數(shù)學(xué)方法的靈活應(yīng)用能力。例如,許多三角方面的題目都是把角、函數(shù)名、結(jié)構(gòu)形式統(tǒng)一后就可以解決問(wèn)題了,而選擇怎樣的三角公式也是成敗的關(guān)鍵。
——最后,題目總結(jié)。解題不是目的,我們是通過(guò)解題來(lái)檢驗(yàn)我們的學(xué)習(xí)效果,發(fā)現(xiàn)學(xué)習(xí)中的不足的,以便改進(jìn)和提高。因此,解題后的總結(jié)至關(guān)重要,這正是我們學(xué)習(xí)的大好機(jī)會(huì)。對(duì)于一道完成的題目,有以下幾個(gè)方面需要總結(jié):
①在知識(shí)方面,題目中涉及哪些概念、定理、公式等基礎(chǔ)知識(shí),在解題過(guò)程中是如何應(yīng)用這些知識(shí)的。
②在方法方面:如何入手的,用到了哪些解題方法、技巧,自己是否能夠熟練掌握和應(yīng)用。
③能不能把解題過(guò)程概括、歸納成幾個(gè)步驟(比如用數(shù)學(xué)歸納法證明題目就有很明顯的三個(gè)步驟)。
④能不能歸納出題目的類型,進(jìn)而掌握這類題目的解題通法(我們反對(duì)老師把現(xiàn)成的題目類型給學(xué)生,讓學(xué)生拿著題目套類型,但我們鼓勵(lì)學(xué)生自己總結(jié)、歸納題目類型)。
篇9:高中數(shù)學(xué)解題策略與技巧
數(shù)學(xué)思想,是指現(xiàn)實(shí)世界的空間形式和數(shù)量關(guān)系反映到人們的意識(shí)之中,經(jīng)過(guò)思維活動(dòng)而產(chǎn)生的結(jié)果。數(shù)學(xué)思想是對(duì)數(shù)學(xué)事實(shí)與理論經(jīng)過(guò)概括后產(chǎn)生的本質(zhì)認(rèn)識(shí);基本數(shù)學(xué)思想則是體現(xiàn)或應(yīng)該體現(xiàn)于基礎(chǔ)數(shù)學(xué)中的具有奠基性、總結(jié)性和最廣泛的數(shù)學(xué)思想,它們含有傳統(tǒng)數(shù)學(xué)思想的精華和現(xiàn)代數(shù)學(xué)思想的基本特征,并且是歷史地發(fā)展著的。通過(guò)數(shù)學(xué)思想的培養(yǎng),數(shù)學(xué)的能力才會(huì)有一個(gè)大幅度的提高。掌握數(shù)學(xué)思想,就是掌握數(shù)學(xué)的精髓。
數(shù)學(xué)思想方法是對(duì)數(shù)學(xué)及規(guī)律的理性認(rèn)識(shí),是對(duì)數(shù)學(xué)知識(shí)的本質(zhì)認(rèn)識(shí),是數(shù)學(xué)認(rèn)識(shí)過(guò)程中提煉上升的數(shù)學(xué)觀點(diǎn)方法。學(xué)生大腦中若不蘊(yùn)含數(shù)學(xué)思想方法,會(huì)導(dǎo)致數(shù)學(xué)學(xué)習(xí)缺乏自主性,往往就成為離不開(kāi)教師這個(gè)拐棍的被動(dòng)學(xué)習(xí)者,學(xué)的數(shù)學(xué)知識(shí)不能用數(shù)學(xué)思想方法有效連接,支離破碎。所以,學(xué)生在數(shù)學(xué)學(xué)習(xí)中,大腦有了數(shù)學(xué)思想,學(xué)習(xí)才有方向?qū)б闹杏辛嗣鞔_方向,才能主動(dòng)思考,才有利于對(duì)數(shù)學(xué)本質(zhì)的認(rèn)識(shí),才能知道如何去思考和解決問(wèn)題。
高中數(shù)學(xué)基本數(shù)學(xué)思想
1.轉(zhuǎn)化與化歸思想:
是把那些待解決或難解決的問(wèn)題化歸到已有知識(shí)范圍內(nèi)可解問(wèn)題的一種重要的基本數(shù)學(xué)思想.這種化歸應(yīng)是等價(jià)轉(zhuǎn)化,即要求轉(zhuǎn)化過(guò)程中的前因后果應(yīng)是充分必要的,這樣才能保證轉(zhuǎn)化后所得結(jié)果仍為原題的結(jié)果. 高中數(shù)學(xué)中新知識(shí)的學(xué)習(xí)過(guò)程,就是一個(gè)在已有知識(shí)和新概念的基礎(chǔ)上進(jìn)行化歸的過(guò)程.因此,化歸思想在數(shù)學(xué)中無(wú)處不在. 化歸思想在解題教學(xué)中的的運(yùn)用可概括為:化未知為已知,化難為易,化繁為簡(jiǎn).從而達(dá)到知識(shí)遷移使問(wèn)題獲得解決.但若化歸不當(dāng)也可能使問(wèn)題的解決陷入困境. 例證
2.邏輯劃分思想(即分類與整合思想):
是當(dāng)數(shù)學(xué)對(duì)象的本質(zhì)屬性在局部上有不同點(diǎn)而又不便化歸為單一本質(zhì)屬性的問(wèn)題解決時(shí),而根據(jù)其不同點(diǎn)選擇適當(dāng)?shù)膭澐謽?biāo)準(zhǔn)分類求解,并綜合得出答案的一種基本數(shù)學(xué)思想.但要注意按劃分標(biāo)準(zhǔn)所分各類間應(yīng)滿足互相排斥,不重復(fù),不遺漏,最簡(jiǎn)潔的要求. 在解題教學(xué)中常用的劃分標(biāo)準(zhǔn)有:按定義劃分;按公式或定理的適用范圍劃分;按運(yùn)算法則的適用條件范圍劃分;按函數(shù)性質(zhì)劃分;按圖形的位置和形狀的變化劃分;按結(jié)論可能出現(xiàn)的不同情況劃分等.需說(shuō)明的是: 有些問(wèn)題既可用分類思想求解又可運(yùn)用化歸思想或數(shù)形結(jié)合思想等將其轉(zhuǎn)化到一個(gè)新的知識(shí)環(huán)境中去考慮,而避免分類求解.運(yùn)用分類思想的關(guān)鍵是尋找引起分類的原因和找準(zhǔn)劃分標(biāo)準(zhǔn). 例證
3. 函數(shù)與方程思想(即聯(lián)系思想或運(yùn)動(dòng)變化的思想):
就是用運(yùn)動(dòng)和變化的觀點(diǎn)去分析研究具體問(wèn)題中的數(shù)量關(guān)系,抽象其數(shù)量特征,建立函數(shù)關(guān)系式,利用函數(shù)或方程有關(guān)知識(shí)解決問(wèn)題的一種重要的基本數(shù)學(xué)思想.
4. 數(shù)形結(jié)合思想:
將數(shù)學(xué)問(wèn)題中抽象的數(shù)量關(guān)系表現(xiàn)為一定的幾何圖形的性質(zhì)(或位置關(guān)系);或者把幾何圖形的性質(zhì)(或位置關(guān)系)抽象為適當(dāng)?shù)臄?shù)量關(guān)系,使抽象思維與形象思維結(jié)合起來(lái),實(shí)現(xiàn)抽象的數(shù)量關(guān)系與直觀的具體形象的聯(lián)系和轉(zhuǎn)化,從而使隱蔽的條件明朗化,是化難為易,探索解題思維途徑的重要的基本數(shù)學(xué)思想.
5. 整體思想:
處理數(shù)學(xué)問(wèn)題的著眼點(diǎn)或在整體或在局部.它是從整體角度出發(fā),分析條件與目標(biāo)之間的結(jié)構(gòu)關(guān)系,對(duì)應(yīng)關(guān)系,相互聯(lián)系及變化規(guī)律,從而找出最優(yōu)解題途徑的重要的數(shù)學(xué)思想.它是控制論,信息論,系統(tǒng)論中“整體—部分—整體”原則在數(shù)學(xué)中的體現(xiàn).在解題中,為了便于掌握和運(yùn)用整體思想,可將這一思想概括為:記住已知(用過(guò)哪些條件?還有哪些條件未用上?如何創(chuàng)造機(jī)會(huì)把未用上的條件用上?),想著目標(biāo)(向著目標(biāo)步步推理,必要時(shí)可利用圖形標(biāo)示出已知和求證);看聯(lián)系,抓變化,或化歸;或數(shù)形轉(zhuǎn)換,尋求解答.一般來(lái)說(shuō),整體范圍看得越大,解法可能越好.
在整體思想指導(dǎo)下,解題技巧只需記住已知,想著目標(biāo), 步步正確推理就夠了.
中學(xué)數(shù)學(xué)中還有一些數(shù)學(xué)思想,如:
集合的思想;
補(bǔ)集思想;
歸納與遞推思想;
對(duì)稱思想;
逆反思想;
類比思想;
參變數(shù)思想
有限與無(wú)限的思想;
特殊與一般的思想.
它們大多是本文所述基本數(shù)學(xué)思想在一定知識(shí)環(huán)境中的具體體現(xiàn).所以在中學(xué)數(shù)學(xué)中,只要掌握數(shù)學(xué)基礎(chǔ)知識(shí),把握代數(shù),三角,立體幾何,解析幾何的每部分的知識(shí)點(diǎn)及聯(lián)系,掌握幾個(gè)常用的基本數(shù)學(xué)思想和將它們統(tǒng)一起來(lái)的整體思想,就定能找到解題途徑.提高數(shù)學(xué)解題能力。
 搜索教員
搜索教員
       
                最新文章
- 如何讓小學(xué)生真正愛(ài)上英語(yǔ)學(xué)習(xí):從課堂反思到教學(xué)創(chuàng)新
- 讓小學(xué)數(shù)學(xué)賽教課煥發(fā)魅力:5個(gè)實(shí)用策略點(diǎn)燃學(xué)生思維
- 小學(xué)五年級(jí)上冊(cè)音樂(lè)《靜夜思》教學(xué)設(shè)計(jì)篇
- 高一物理必修一:位移和路程,別再混為一談了
- 六年級(jí)英語(yǔ)復(fù)習(xí),真不是背單詞那么簡(jiǎn)單
- 一次月考,照見(jiàn)學(xué)習(xí)的底色
- 如何指導(dǎo)初中數(shù)學(xué),初中數(shù)學(xué)教學(xué),如何有效指導(dǎo)學(xué)生掌握關(guān)鍵概念?
- 中考語(yǔ)文“綜合性學(xué)習(xí)”類試題解析
- 初中語(yǔ)文怎么學(xué)?別再瞎刷題了,這5件事比題海有用
- 暑假不躺平:一個(gè)高二學(xué)生的實(shí)戰(zhàn)學(xué)習(xí)安排
 
                熱門文章
- 初中數(shù)學(xué)選擇題這樣解,效率翻倍還不易出錯(cuò)
- 小學(xué)語(yǔ)文知識(shí)點(diǎn)大全篇
- 初中數(shù)學(xué)一對(duì)一補(bǔ)習(xí),真正管用的8個(gè)方法
- 入團(tuán)申請(qǐng)書優(yōu)秀范文(十五篇)
- 英語(yǔ)學(xué)不好?十件事你必須現(xiàn)在做
- 盤點(diǎn)國(guó)內(nèi)出身高貴的七所大學(xué)
- 初中生物重要題型識(shí)圖填空題,你知道如何解答嗎?
- 高一化學(xué)入門:從甲烷開(kāi)始,把有機(jī)化學(xué)變成生活里的常識(shí)
- 初中語(yǔ)法:名詞重點(diǎn)、難點(diǎn)、考點(diǎn)一網(wǎng)打盡,必看
- 高二物理必修一:晶體與表面張力,搞懂這幾點(diǎn)就夠了

大家都在看
- 白教員 中央民族大學(xué) 中國(guó)少數(shù)民族語(yǔ)言文學(xué)
- 趙教員 中國(guó)人民大學(xué) 工商管理類
- 周教員 中央民族大學(xué) 應(yīng)用統(tǒng)計(jì)
- 高教員 上海理工大學(xué) 英語(yǔ)
- 劉教員 首都師范大學(xué) 中國(guó)語(yǔ)言文學(xué)
- 楊教員 中央財(cái)經(jīng)大學(xué) 法學(xué)
- 康教員 北京科技大學(xué) 機(jī)械
- 劉教員 北京大學(xué) 集成電路工程
- 張教員 大連工業(yè)大學(xué) 機(jī)械電子工程
- 馮教員 北京航空航天大學(xué) 自動(dòng)化

 請(qǐng)家教熱線:400-6789-353 010-64450797 010-64436939
請(qǐng)家教熱線:400-6789-353 010-64450797 010-64436939   
	   微信版
微信版 -北京家教  京ICP備10209629號(hào)-19
-北京家教  京ICP備10209629號(hào)-19